Improving phosphorus recycling from sewage sludge

2022-10-16 12:00:42 By : Ms. Kyra Yu

Click here to sign in with or

by Nadja Neumann, Forschungsverbund Berlin e.V. (FVB)

Phosphorus is an important raw material, especially as a fertilizer for agriculture. But in water bodies, it deteriorates the water quality. Since the 1980s, phosphate precipitation has therefore been one of the core processes in municipal wastewater treatment plants. Phosphorus is bound with salts in the sewage sludge. However, because this raw material is also becoming increasingly scarce, it should be recovered there. This can be achieved, for example, if it is present in bound form as vivianite. Researchers from the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) have investigated which factors promote the formation of vivianite and thus increase the amount of recoverable phosphorus.

There are many good reasons to recycle phosphorus: Rock phosphates are increasingly contaminated and supply depends on a few countries. That's why it has been on the European Union's list of "critical raw materials" since 2014. And the German government also passed the Sewage Sludge Ordinance in 2017: According to it, by 2032, larger plant operators are to ensure that the phosphorus contained in sewage sludge is recovered.

Precipitation in sewage sludge can produce vivianite—an iron-phosphorus compound from which phosphorus can be relatively easily recycled. "But until now, it wasn't clear what conditions in sewage treatment plants favor vivianite formation. We are also interested in this for lake restoration, where precipitation of phosphorus from water is also used to reduce nutrient loads and thus improve water quality," explained IGB researcher Michael Hupfer, who led the study. The team analyzed the properties and compositions of sludge samples from 16 wastewater treatment plants, as well as the plants' process parameters, to determine the factors influencing vivianite formation.

High iron content favors vivianite formation—high sulfur content reduces it

High iron content proved to be the most important factor in favoring vivianite formation. High sulfur content, in turn, decreased vivianite formation. "There are sulfur-containing and sulfur-free precipitants. We were able to show by comparison that the use of sulfur-containing precipitants can increase the sulfur content in the sludge and thus counteract vivianite formation. The choice of precipitant can therefore have a significant influence on phosphorus recycling," said IGB doctoral student Lena Heinrich, lead author of the study.

Adjusting the conditions can make a difference: In the 16 wastewater treatment plants, the proportion of phosphorus bound in vivianite varied from around 10% to as much as 50%. This range shows the great potential to increase the yield of vivianite.

"For us as aquatic ecologists, the findings are very important because iron-containing precipitants can also be considered for restoration of lakes that are eutrophic, or polluted with nutrients. The efficiency of an iron salt addition is much greater if it results in the formation of stable vivianite in the sediment, which is then—perhaps one day—also available for the recovery of phosphorus," said Hupfer.

The study appears in Science of The Total Environment. Explore further Sewage sludge could make great sustainable fertilizer More information: Lena Heinrich et al, Formation of vivianite in digested sludge and its controlling factors in municipal wastewater treatment, Science of The Total Environment (2022). DOI: 10.1016/j.scitotenv.2022.158663 Journal information: Science of the Total Environment

Provided by Forschungsverbund Berlin e.V. (FVB) Citation: Improving phosphorus recycling from sewage sludge (2022, October 14) retrieved 16 October 2022 from https://phys.org/news/2022-10-phosphorus-recycling-sewage-sludge.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Biology and Medical

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.